Category Archives: Psychology

Method of server-side biofeedback system for mechanically evolving human-computer interfaces

Many different forms of biofeedback devices, each with it’s own software, could be attached to a USB port on any networked device that supports USB. The output from the devices are sent real time in raw (compressed and encrypted) form to a server side application, probably written in C++. The installation of the new device involves:

  1. acquiring the biofeedback device,
  2. connecting it to the network device,
    identifying the muscle groups, electrode locations, or any other biofeedback characteristics,

  3. initiating the translational learning, and
  4. interacting in regular teaching sessions within an individual account.

The first signal from the biofeedback device to the server is it’s identification. An installation file is selected and executed on the basis of this identification. The installation file is run on the server side to set up the new device and initiate the translation learning. Translation learning begins as the translation software (Referred to as “Empath”), requests that the user perform certain tasks, concurrently storing the streaming output of the biofeedback device. A new database table is generated for each device installed within your account to your Empath. Correlations are evaluated between biofeedback streams and the tasks being performed in order to identify the appropriate computer response to realtime biofeedback streams.

Each user teaches the application to respond to biofeedback by providing the computer with adequate samples of data. When there is any transalation that does not meet an acceptable standard of certainty, the user is prompted for additional samples that specify the correct translation; this acts to teach the Empath. The teaching system can be disabled, and the certainty standards can be edited.

Device manufacturer would provide a biofeedback hardware device that would stream realtime to a USB plug, and a very small definition file (probably an XML file consisting of identification, and translation variables… possibly specifying the tasks to be requested in initial teaching sessions, as well as other fields that can grow into a public standard interface protocol). From the user account, a list of supported devices could be made available to display the definition files available.

This method would provide an interface between the human and the computer in which the computer and the human communicate through any type of USB biofeedback device. These devices would connect by UBS cable to a network device which is in turn communicating with a server (Probably by thin client streaming software that takes USB input and sets up VPN, compression, and encryption).

As many users teach their Empath to translate their biofeedback, aggregate information will be extracted for increasing the rate of learning for each user. Correlations across very large populations will help to initiate the teaching process for new individuals; this way the Empath can use the rest of the population as a starting place from which to earn the new individually optimized translation.

Implications for computing: computers will be learn to understand your gestures if you can stream your gestures into the USB port. Server side “ASP” processing allows for very thin client applications and extensible device support. Interface standard publication enables mass market public and commercial development of biofeedback devices with USB output.

Implications for humans: We turn the corner such that computers learn to understand what humans mean, rather than humans being forced to learn new (and highly limited) communications skills, like typing.

Samurai Technocrats

Samurai Technocrats are committed to improving humanity through championing technological tools and systems. There was a premature rise and fall of this class in the internet boom that rung in the 21st century, as many individuals — and eventually groups — began to work and build businesses that were designed to create utility and not just capital.

The conditions that create samurai technocrats are financial security, embracing of innovation, freedom of communication, and broad generosity.

In the 21st century, anonymity will become more optional, and so samurai technocrats will emerge from obscurity.

Building Intelligent systems: biological and software

There are amazing analogies between computer processors and the brain, and it is just a matter of time before the algorithms that define electronic processors mirror the functionality of the chemical processors of our brains. The biological neural systems rely on inputs and pattern recognition to learn. Computers are excellent at storing (remembering) facts, and are becoming proficient at recognizing relationships as defined by statistical patterns and neural networks. However, computers cannot yet create metaphors or learn how to independently process new information.

Metaphors are an important part of how humans think. We understand new information as we draw parallels and connections between it and prior information. Over-simply put, we learn by recognizing relationships between new information and old. Computers could do the same when their sets of data include enough relevant fields to be able to computationally identify systems that are described by similar dynamics. In other words, when a computer has data about how things works, it can find systems that work similarly to each other. The leap from there to drawing metaphors is a data-mining process: it can be solved by computational rote, where statistical relationships are identified, prioritized, and used for prediction.

This process also leads to “learning” about how to process new information. By recognizing the metaphors, new data can be classified and described according to how it is understood. And just like in our brains, there will be errors. Misunderstanding will occur as metaphors are calculated based on incomplete data sets. As more data is input, systems will have to be able to make corrections and re-calculate all of the other metaphors that included the corrected data. New corrections will be made and a cascade of corrections will result in a modified historical data record. A large number of calculations and recalculations will occur with each new input, and the storage of historical data (and calculated results) will require substantial processing and storage.

Recognizing metaphors will allow machines to output statements like: “It appears that ABC is driven in many similar ways to XYZ. The result we are seeking might be accomplished by A because a similar result was achieved in XYZ when X was applied.” Put more simply, computers will be able to express creative suggestions.

Interestingly, storage could be massively reduced by deleting large volumes of data that support the relationships that are strong enough to overcome some threshold level of certainty. For example, if everything falls, then we don’t have to keep all that data, just the relationship that everything falls. This may be analogous to forming intuitions.

The Future of Productivity and Culture

Productivity will continue to increase – and at an increasing rate. This trend inevitably leads us to the average person only working a small amount to support their basic needs. While this will be true on average, in reality we will most likely see a few individuals working very productively and supporting the needs of growing groups of underemployed people.

Social safety nets will become easier to support (assuming that the standard of social safety does not increase faster than the improvements in productivity). Vast portions of the population will stop working. Cultural differences will become pronounced as individuals and groups ‘specialize’ in non-work activities. Quality and breadth of entertainment, interpersonal interaction, and self-expression will greatly improve.

There will be a growing conflict between the highly productive individuals and companies and the large numbers of people who are underemployed. Managing this conflict will be a major political task.

Forecast Changes in Asset Values based on Measurable Cultural influences

The sum total of the media contributed to the internet approximates the attention of society during that period. Then analysis of this media indicates trends in attention and preferences. These trends create signals about the directions of values for securities and other assets. Frequency and trend directions of keyword usage, volume of content in certain classifications, and level and type of contribution of media files vs. sector and industry pricing trends are recommended starting points for analytical comparison.